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Forward Hadron Production in pA Collisions

Deep into low-x region of Protons

Partons in the low-x region is dominated by gluons.
Gluon splitting functions have 1/x singularities.
Resummation of the αs ln 1

x .
The dynamics becomes non-linear at high gluon density.
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Forward Hadron Production in pA Collisions

Saturation physics

Saturation physics describes the high density parton distributions in the high energy limit.

In QCD, the McLerran-Venugopalan Model describes high density gluon distribution in a
relativistic large nucleus (A� 1) by solving the classical Yang-Mills equation:

[Dµ,Fµν ] = gJν with Jν = δν+ρa(x−, x⊥)T
a, COV gauge⇒ −52

⊥ A+ = gρ.

The Wilson line

U(x⊥) = T exp
[
−ig2

∫
dz−d2z⊥G (x⊥ − z⊥) ρ

(
z−, z⊥

)]
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Forward Hadron Production in pA Collisions

Collinear Factorization vs k⊥ Factorization

Collinear Factorization Approximation: neglecting the k⊥

xp+, k⊥ = 0 xp+, k⊥ = 0

k⊥ Factorization(Spin physics and saturation physics)

In general, there is intrinsic k⊥ ' λ. It can be negligible for partons in protons,
but should be taken into account for nucleus targets with A→∞.
The accumulation of k2

⊥ is proportional to A
1
3 λ2. (Random Walk Picture)

k⊥ Factorization: High energy evolution respect to x with k⊥ unintegrated.
Collinear Factorization: DGLAP evolution respect to both x and k⊥.
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Forward Hadron Production in pA Collisions

Phase diagram in QCD

6 / 27



Forward Hadron Production in pA Collisions

Forward hadron production in pA collisions

Consider the inclusive production of inclusive forward hadrons in pA collisions, i.e., in the
process: [Dumitru, Jalilian-Marian, 02]

p + A→ H + X.

The leading order result for producing a hadron with transverse momentum p⊥ at rapidity yh

dσpA→hX
LO

d2p⊥dyh
=

∫ 1

τ

dz
z2

∑
f

xpqf (xp)F(k⊥)Dh/q(z) + xpg(xp)F̃(k⊥)Dh/g(z)

 .

· · ·
⇒ U(x⊥) = P exp

{
igS

∫ +∞

−∞
dx+ TcA−c (x+, x⊥)

}
,

F(k⊥) =
∫

d2x⊥d2y⊥
(2π)2 e−ik⊥·(x⊥−y⊥)S(2)

Y (x⊥, y⊥).

p⊥ = zk⊥, xp = p⊥
z
√

s eyh (large), τ = zxp and xg = p⊥
z
√

s e−yh (small).

S(2)
Y (x⊥, y⊥) = 1

Nc

〈
TrU(x⊥)U†(y⊥)

〉
Y

with Y ∼ ln 1/xg.

The gluon channel with F̃(k⊥) defined in the adjoint representation.
Beyond the hybrid factorization, see [E. Avsar, arXiv:1203.1916].
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Forward Hadron Production in pA Collisions

Issues with the leading order calculation

The comparison between the leading order calculation and the RHIC data:
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Comments: Why do we need NLO calculations?
LO calculation is order of magnitude estimate. Normally, we need to introduce the
artificial K factor to fix the normalization. Fails to describe large p⊥ data.
There are large theoretical uncertainties due to renormalization/factorization scale
dependence in xf (x) and D(z). NLO reduces the scale dependence. Higher order in the
perturbative series in αs improves the reliability of the predictions.
K = σLO+σNLO

σLO
is not a good approximation.

NLO results may distort the shape of the cross section.
NLO is vital in terms of establishing the QCD factorization in saturation physics.
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NLO Forward Hadron Production in pA Collisions

The overall picture

· · ·

H

Cp Cf

R

A X

PhP

The QCD factorization formalism for this process reads as,

d3σp+A→h+X

dyd2p⊥
=

∑
a

∫
dz
z2

dx
x
ξxfa(x, µ)Dh/c(z, µ)

∫
[dx⊥]S

Y
a,c([x⊥])Ha→c(αs, ξ, [x⊥]µ) .

There is no rapidity divergence at LO. Encounter three types of divergences at NLO.
For UGD, the rapidity divergence cannot be canceled between real final state
and virtual gluon emission due to different restrictions on k⊥.
Subtractions of the divergences via renormalization.
⇒ Finite results for hard factors at NLO. 9 / 27



NLO Forward Hadron Production in pA Collisions The q → q channel

The real contributions in the coordinate space

Computing the real diagrams with a quark (b⊥) and a gluon (x⊥) in the final state in the dipole
model in the coordinate space: [G. Chirilli, BX and F. Yuan, 11;12]

(a) (b)

(d)(c)

dσqA→qgX

d3k1d3k2
= αSCFδ(p+ − k+

1 − k+
2 )

∫
d2x⊥
(2π)2

d2x′⊥
(2π)2

d2b⊥
(2π)2

d2b′⊥
(2π)2

×e−ik1⊥·(x⊥−x′⊥)e−ik2⊥·(b⊥−b′⊥)
∑
λαβ

ψλ∗αβ(u
′
⊥)ψ

λ
αβ(u⊥)

×
[
S(6)

Y (b⊥, x⊥, b
′
⊥, x
′
⊥) + S(2)

Y (v⊥, v
′
⊥)

−S(3)
Y (b⊥, x⊥, v

′
⊥)− S(3)

Y (v⊥, x
′
⊥, b

′
⊥)
]
,

with u⊥ = x⊥ − b⊥ and v⊥ = (1− ξ)x⊥ + ξb⊥.
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NLO Forward Hadron Production in pA Collisions The q → q channel

The real contributions in the coordinate space

Computing the real diagrams with a quark (b⊥) and a gluon (x⊥) in the final state in the dipole
model in the coordinate space: [G. Chirilli, BX and F. Yuan, 11;12]

(a) (b)

(d)(c)

S(6)
Y (b⊥, x⊥, b

′
⊥, x
′
⊥) =

1
CFNc

〈
Tr
(

U(b⊥)U
†(b′⊥)T

dTc
) [

W(x⊥)W
†(x′⊥)

]cd
〉

Y

,

S(3)
Y (b⊥, x⊥, v

′
⊥) =

1
CFNc

〈
Tr
(

U(b⊥)T
dU†(v′⊥)T

c
)

Wcd(x⊥)
〉

Y
.

By integrating over the gluon momentum, we identify x⊥ to x′⊥ which simplifies
S(6)

Y (b⊥, x⊥, b′⊥, x
′
⊥) to S(2)(b⊥, b′⊥).

S(3)
Y (b⊥, x⊥, v′⊥) =

Nc
2CF

[
S(4)

Y (b⊥, x⊥, v′⊥)− 1
N2

c
S(2)

Y (b⊥, v′⊥)
]

11 / 27



NLO Forward Hadron Production in pA Collisions The q → q channel

The real contributions in the momentum space

By integrating over the gluon (k+
1 , k1⊥), we can cast the real contribution into

αs

2π2

∫
dz
z2 Dh/q(z)

∫ 1

τ/z
dξ

1 + ξ2

1− ξ xq(x)
{

CF

∫
d2kg⊥I(k⊥, kg⊥)

+
Nc

2

∫
d2kg⊥d2kg1⊥J (k⊥, kg⊥, kg1⊥)

}
,

where x = τ/zξ and I and J are defined as

I(k⊥, kg⊥) = F(kg⊥)

[
k⊥ − kg⊥

(k⊥ − kg⊥)2 −
k⊥ − ξkg⊥

(k⊥ − ξkg⊥)2

]2

,

J (k⊥, kg⊥, kg1⊥) =
[
F(kg⊥)δ

(2) (kg1⊥ − kg⊥)− G(kg⊥, kg1⊥)
] 2(k⊥ − ξkg⊥) · (k⊥ − kg1⊥)

(k⊥ − ξkg⊥)2(k⊥ − kg1⊥)2 ,

with G(k⊥, l⊥) =

∫
d2x⊥d2y⊥d2b⊥

(2π)4 e−ik⊥·(x⊥−b⊥)−il⊥·(b⊥−y⊥)S(4)
Y (x⊥, b⊥, y⊥).

Three types of divergences: Life is boring without divergences.
ξ → 1⇒ Rapidity divergence.
kg⊥ → k⊥⇒ Collinear divergence associated with parton distributions.
kg⊥ → k⊥/ξ⇒ Collinear divergence associated with fragmentation functions.
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NLO Forward Hadron Production in pA Collisions The q → q channel

The virtual contributions in the momentum space

Now consider the virtual contribution

(a) (b)

−2αsCF

∫
d2v⊥
(2π)2

d2v′⊥
(2π)2

d2u⊥
(2π)2 e−ik⊥·(v⊥−v′⊥)

∑
λαβ

ψλ∗αβ(u⊥)ψ
λ
αβ(u⊥)

×
[
S(2)

Y (v⊥, v
′
⊥)− S(3)

Y (b⊥, x⊥, v
′
⊥)
]

⇒ − αs

2π2

∫
dz
z2 Dh/q(z)xpq(xp)

∫ 1

0
dξ

1 + ξ2

1− ξ

×
{

CF

∫
d2q⊥I(q⊥, k⊥) +

Nc

2

∫
d2q⊥d2kg1⊥J (q⊥, k⊥, kg1⊥)

}
.

Three types of divergences:
ξ → 1⇒ Rapidity divergence.
Collinear divergence associated with parton distributions and fragmentation functions.
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NLO Forward Hadron Production in pA Collisions The q → q channel

The subtraction of the rapidity divergence

We remove the rapidity divergence from the real and virtual diagrams by the following
subtraction:

F(k⊥) = F (0)(k⊥)−
αsNc

2π2

∫ 1

0

dξ
1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2 e−ik⊥·(x⊥−y⊥)

× (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)(x⊥, y⊥)− S(4)(x⊥, b⊥, y⊥)

]
.

Decomposing the dipole splitting kernel as

(x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2 =
1

(x⊥ − b⊥)2 +
1

(y⊥ − b⊥)2 −
2(x⊥ − b⊥) · (y⊥ − b⊥)
(x⊥ − b⊥)2(y⊥ − b⊥)2 .

with the first two terms removed from the virtual diagrams while the last term removed from the
real diagrams. Comments:

This divergence removing procedure is similar to the renormalization of parton distribution
and fragmentation function in collinear factorization.

Splitting functions becomes 1+ξ2

(1−ξ)+
after the subtraction.

Rapidity divergence disappears when the k⊥ is integrated.
Unique feature of unintegrated gluon distributions.
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NLO Forward Hadron Production in pA Collisions The q → q channel

The subtraction of the rapidity divergence

F(k⊥) = F (0)(k⊥)−
αsNc

2π2

∫ 1

0

dξ
1− ξ

∫
d2x⊥d2y⊥d2b⊥

(2π)2 e−ik⊥·(x⊥−y⊥)

× (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)(x⊥, y⊥)− S(4)(x⊥, b⊥, y⊥)

]
.

This is equivalent to the Balitsky-Kovchegov equation:

∂

∂Y
S(2)

Y (x⊥, y⊥) = −
αsNc

2π2

∫
d2b⊥ (x⊥ − y⊥)2

(x⊥ − b⊥)2(y⊥ − b⊥)2

[
S(2)

Y (x⊥, y⊥)− S(4)
Y (x⊥, b⊥, y⊥)

]
.

Recall that F(k⊥) =
∫ d2x⊥d2y⊥

(2π)2 e−ik⊥·(x⊥−y⊥)S(2)(x⊥, y⊥).
The rapidity divergence is an artifact of the high energy limit s→∞. By slightly tilting
away from the light cone, we obtain

∫ 1
0

dξ
1−ξ+e−Y and introduce Y dependence to the dipole

amplitude.
Introducing cutoff 1− e−Y and considering the change from Y to Y + dY ⇒ the BK
equation
ξ → 1 implies that gluon is infinitely soft and its rapidity goes to −∞.
This soft gluon is in fact collinear to the target nucleus.
Renormalize the soft gluon into the gluon distribution function of the target nucleus
through the BK evolution equation.
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NLO Forward Hadron Production in pA Collisions The q → q channel

The subtraction of the collinear divergence

Let us take the following integral as an example:

I1(k⊥) =

∫
d2kg⊥

(2π)2 F(kg⊥)
1

(k⊥ − kg⊥)2 ,

=
1

4π

∫
d2x⊥d2y⊥
(2π)2 e−ik⊥·r⊥S(2)

Y (x⊥, y⊥)
(
−1
ε̂
+ ln

c2
0

µ2r2
⊥

)
,

where c0 = 2e−γE , γE is the Euler constant and r⊥ = x⊥ − y⊥.

Use dimensional regularization (D = 4− 2ε) and the MS subtraction scheme
( 1
ε̂
= 1

ε
− γE + ln 4π).∫ d2kg⊥

(2π)2 ⇒ µ2ε ∫ d2−2εkg⊥
(2π)2−2ε where µ is the renormalization scale dependence coming from

the strong coupling g.

The terms proportional to the collinear divergence 1
ε̂

should be factorized either into parton
distribution functions or fragmentation functions.
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NLO Forward Hadron Production in pA Collisions The q → q channel

The subtraction of the collinear divergence

Remove the collinear singularities by redefining the quark distribution and the quark
fragmentation function as follows

q(x, µ) = q(0)(x)− 1
ε̂

αs(µ)

2π

∫ 1

x

dξ
ξ

CFPqq(ξ)q
(

x
ξ

)
,

Dh/q(z, µ) = D(0)
h/q(z)−

1
ε̂

αs(µ)

2π

∫ 1

z

dξ
ξ

CFPqq(ξ)Dh/q

(
z
ξ

)
,

with

Pqq(ξ) =
1 + ξ2

(1− ξ)+︸ ︷︷ ︸
Real Sub

+
3
2
δ(1− ξ)︸ ︷︷ ︸
Virtual Sub

.

Comments:
Reproducing the DGLAP equation for the quark channel. Other channels will complete the
full equation.
The emitted gluon is collinear to the initial state quark⇒
Renormalization of the parton distribution.
The emitted gluon is collinear to the final state quark⇒
Renormalization of the fragmentation function.
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NLO Forward Hadron Production in pA Collisions The q → q channel

Hard Factors

For the q→ q channel, the factorization formula can be written as

d3σp+A→h+X

dyd2p⊥
=

∫
dz
z2

dx
x
ξxq(x, µ)Dh/q(z, µ)

∫
d2x⊥d2y⊥

(2π)2

{
S(2)

Y (x⊥, y⊥)
[
H(0)

2qq +
αs

2π
H(1)

2qq

]
+

∫
d2b⊥
(2π)2

S(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq

}
withH(0)

2qq = e−ik⊥·r⊥δ(1− ξ) and

H(1)
2qq = CFPqq(ξ) ln

c2
0

r2
⊥µ

2

(
e−ik⊥·r⊥ +

1
ξ2

e−i
k⊥
ξ
·r⊥
)
− 3CFδ(1− ξ)e−ik⊥·r⊥ ln

c2
0

r2
⊥k2
⊥

− (2CF − Nc) e−ik⊥·r⊥

 1 + ξ2

(1− ξ)+

Ĩ21 −
((

1 + ξ2
)

ln (1− ξ)2

1− ξ

)
+


H(1)

4qq = −4πNce−ik⊥·r⊥

{
e−i 1−ξ

ξ
k⊥·(x⊥−b⊥) 1 + ξ2

(1− ξ)+

1
ξ

x⊥ − b⊥
(x⊥ − b⊥)2 ·

y⊥ − b⊥
(y⊥ − b⊥)2

−δ(1− ξ)
∫ 1

0
dξ′

1 + ξ′2

(1− ξ′)+

[
e−i(1−ξ′)k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′⊥

r′2⊥

]}
,

where Ĩ21 =

∫
d2b⊥
π

{
e−i(1−ξ)k⊥·b⊥

[
b⊥ · (ξb⊥ − r⊥)

b2
⊥ (ξb⊥ − r⊥)2 −

1
b2
⊥

]
+ e−ik⊥·b⊥ 1

b2
⊥

}
.
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NLO Forward Hadron Production in pA Collisions The q → q channel

Hard Factors in the MV model

In the MV model with S(2)
MV(x⊥, y⊥) = exp

[
− (x⊥−y⊥)2Q2

s
4

]
, the factorization formula can be

written as
d3σp+A→h+X

dyd2p⊥
=

∫
dz
z2

dx
x
ξxq(x, µ)Dh/q(z, µ)

[
H̄(0)

2qq +
αs

2π
H̄(1)

2qq +
αs

2π
H̄(1)

4qq

]
with H̄(0)

2qq = δ(1− ξ)F(k⊥) and

H̄(1)
2qq =

Nc

2
Pqq(ξ)F(k⊥)

[
ln

Q2
s

µ2eγE
+ exp

(
k2
⊥

Q2
s

)
L(1,0)

(
−1,−

k2
⊥

Q2
s

)]

+
1
ξ2

Nc

2
Pqq(ξ)F

(
k⊥
ξ

)[
ln

Q2
s

µ2eγE
+ exp

(
k2
⊥

ξ2Q2
s

)
L(1,0)

(
−1,−

k2
⊥

ξ2Q2
s

)]

−δ(1− ξ)
3Nc

2
F(k⊥)

[
ln

Q2
s

k2
⊥eγE

+ exp

(
k2
⊥

Q2
s

)
L(1,0)

(
−1,−

k2
⊥

Q2
s

)]
,

H̄(1)
4qq = Ncδ(1− ξ)F(k⊥)

[
3
2

ln
Q2

s

k2
⊥eγE

+

∫ 1

0
dξ′

1 + ξ′2

(1− ξ′)+

exp

(
−
ξ′2k2
⊥

Q2
s

)
L(1,0)

(
−1,

ξ′2k2
⊥

Q2
s

)]

−
S⊥Nc

π

1 + ξ2

(1− ξ)+

1
k2
⊥

[
1− exp

(
−

k2
⊥

Q2
s

)][
1− exp

(
−

k2
⊥

ξ2Q2
s

)]

Large Nc limit⇒ factorization of S(4)
Y (x⊥, b⊥, y⊥)→ S(2)

Y (x⊥, b⊥)S(2)
Y (b⊥, y⊥).
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NLO Forward Hadron Production in pA Collisions The q → q channel

What have we learnt so far?

Achieve a systematic factorization for the p + A→ H + X process.

Gluons in different kinematical region give different divergences. 1.soft, collinear to the
target nucleus; 2. collinear to the initial quark; 3. collinear to the final quark.

k+ ≃ 0

P+

A
≃ 0

P−
p ≃ 0

Rapidity Divergence Collinear Divergence (F)Collinear Divergence (P)

Factorization scale µ can be set to c0/r⊥ ' Qs.

Large Nc limit simplifies the calculation quite a lot.

Consistent check: take the dilute limit, k2
⊥ � Q2

s , the result is consistent with the leading
order collinear factorization formula. Good large p⊥ behavior!

The NLO prediction and test of saturation physics now is
not only conceivable but also practicable!

More comments at the end on the implementation of the phenomenological applications.
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NLO Forward Hadron Production in pA Collisions The other three channels: g → g, q → g and g → q

The g → g channel

The calculation on the g→ g channel is similar to the q→ q channel with a few differences:

(a) (b)

(d)(c)

(a) (b)

(a) (b)

Two types of virtual graphs.
The subtraction of the rapidity divergence follows

∂

∂Y

〈
trAW†x⊥Wy⊥

〉
Y

= −
αs

π2

∫
d2z⊥ (x⊥ − y⊥)2

(x⊥ − z⊥)2(y⊥ − z⊥)2[
CA

〈
trAW†x⊥Wy⊥

〉
Y
−
〈

trAW†z⊥ taWz⊥W†x⊥ taWy⊥

〉
Y

]
,

where W is the Wilson line in the adjoint representation.
Wab(x⊥) = 2Tr

[
TaU(x⊥)TbU†(x⊥)

]
converts everything into Fundamental representation.

Large Nc limit is essential here to eliminate the sextupole (6 U’s in a single trace) contribution.
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NLO Forward Hadron Production in pA Collisions The other three channels: g → g, q → g and g → q

The subtraction of the collinear divergence

Remove the collinear singularities by redefining the parton distribution and the fragmentation
function as follows[

q (x, µ)
g (x, µ)

]
=

[
q(0) (x)
g(0) (x)

]
− 1
ε̂

α (µ)

2π

∫ 1

x

dξ
ξ

[
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

] [
q (x/ξ)
g (x/ξ)

]
,

and[
Dh/q (z, µ)
Dh/g (z, µ)

]
=

[
D(0)

h/q (z)

D(0)
h/g (z)

]
−1
ε̂

α (µ)

2π

∫ 1

z

dξ
ξ

[
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

] [
Dh/q (z/ξ)
Dh/g (z/ξ)

]
,

with

Pgg(ξ) = 2
[

ξ

(1− ξ)+
+

1− ξ
ξ

+ ξ(1− ξ)
]

︸ ︷︷ ︸
Real

+

(
11
6
− 2Nf TR

3Nc

)
δ(1− ξ)︸ ︷︷ ︸

Virtual

,

Pgq(ξ) =
1
ξ

[
1 + (1− ξ)2

]
Pqg(ξ) =

[
(1− ξ)2 + ξ2

]
Comments:

Reproducing the full DGLAP equation for the quark channel.
q→ g and g→ q channels only have collinear divergences, no rapidity divergence.
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The LO+NLO cross section

With chosen µ = c0/r⊥, adding all the channels together in the large Nc limit gives

d3σp+A→h+X

dyd2p⊥
=

∫
dz
z2

dx
x
ξ [xq(x, µ), xg(x, µ)]

[
Sqq Sqg
Sgq Sgg

] [
Dh/q (z, µ)
Dh/g (z, µ)

]
,

Sqq =

∫
d2x⊥d2y⊥e−ik⊥·r⊥δ(1− ξ)

(2π)2
S(2)

Y (x⊥, y⊥)

[
1−

αs

2π
3CF ln

c2
0

r2
⊥k2
⊥

]

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)

Y (x⊥, b⊥, y⊥)
αs

2π
H(1)

4qq ,

Sqg =
αs

2π

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)

Y (x⊥, b⊥, y⊥)H(1)
4gq ,

Sgq =
αs

2π

∫
d2x⊥d2y⊥d2b⊥

(2π)4
S(4)

Y (x⊥, b⊥, y⊥)H(1)
4qg ,

Sgg =

∫
d2x⊥d2y⊥e−ik⊥·r⊥δ(1− ξ)

(2π)2

∣∣∣S(2)
Y (x⊥, y⊥)

∣∣∣2 [1−
αsNc

2π

[
11
3
−

4Nf TR

3Nc

]
ln

c2
0

r2
⊥k2
⊥

]

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4 S(2)
Y (x⊥, b⊥)S(2)

Y (b⊥, y⊥)
αs

2π
H(1)

2qq̄

+

∫
d2x⊥d2y⊥d2b⊥

(2π)4 S(2)
Y (x⊥, b⊥)S(2)

Y (b⊥, y⊥)S(2)
Y (y⊥, x⊥)

αs

2π
H(1)

6gg .
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The LO+NLO cross section continued

The hard factors are defined as

H(1)
2qq̄ = 8πNf TRe−ik⊥·(y⊥−b⊥)δ(1− ξ)

∫ 1

0
dξ′
[
ξ′2 + (1− ξ′)2

]
×
[

e−iξ′k⊥·(x⊥−y⊥)

(x⊥ − y⊥)2
− δ(2)(x⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′⊥

r′2⊥

]

H(1)
6gg = −16πNce−ik⊥·r⊥

{
e−i

k⊥
ξ
·(y−b) [1− ξ(1− ξ)]2

(1− ξ)+

1
ξ2

x⊥ − y⊥
(x⊥ − y⊥)2 ·

b⊥ − y⊥
(b⊥ − y⊥)2

− δ(1− ξ)
∫ 1

0
dξ′
[

ξ′

(1− ξ′)+

+
1
2
ξ′(1− ξ′)

]

×
[

e−iξ′k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′⊥

r′2⊥

]}
,

H(1)
4gq = −4πNcW

(
k⊥
ξ
, k⊥

)
Pgq (ξ)

1
ξ

x⊥ − y⊥
(x⊥ − y⊥)2 ·

b⊥ − y⊥
(b⊥ − y⊥)2 ,

H(1)
4qg = −4πW

(
k⊥,

k⊥
ξ

)
Pqg (ξ)

1
ξ

x⊥ − y⊥
(x⊥ − y⊥)2 ·

b⊥ − y⊥
(b⊥ − y⊥)2 ,

with W (k1⊥, k2⊥) = e−ik1⊥·(x⊥−y⊥)−ik2⊥·(y⊥−b⊥).
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Numerical implementation of the NLO result

Consistent implementation should include all the αs corrections.

NLO parton distributions. (Choose your favorite one, CTEQ or MSTW)

NLO fragmentation function. (DSS or others.)

Use NLO hard factors.

Use the one-loop approximation for the running coupling which is sufficient in this
calculation.

NLO BK evolution equation for the dipole gluon distribution. (Hard)
Alternate solution: Treat the dipole amplitude as an input, use GBW model or your
favorite parametrization of dipole amplitudes with appropriate energy dependence, and
then find the best fit by comparing with all the available data. Then make prediction for the
LHC pA collisions. (working in progress)

Looking at about 20− 30 percent uncertainty. Large Nc limit gives about 10 percent.
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Conclusion and Outlook

Conclusion and Outlook

We calculate inclusive hadron productions in pA collisions in the small-x saturation
formalism at one-loop order.

The rapidity divergence with small-x dipole gluon distribution of the nucleus is factorized
into the BK evolution of the dipole gluon distribution function.

The collinear divergences associated with the incoming parton distribution of the nucleon
and the outgoing fragmentation function of the final state hadron are factorized into the
well-known DGLAP equation.

The hard coefficient function, which is finite and free of divergence of any kind, is
evaluated at one-loop order.

Now we have a systematic NLO description of inclusive forward hadron productions in pA
collisions which is ready for making reliable predictions and conducting precision test.
Phenomenological applications are promising for both RHIC and LHC experiments.
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Outlook

Using this factorization technique, we can imagine that a lot of other NLO calculations can be
achieved in the near future.

NLO Drell-Yan productions NLO Single Inclusive DISNLO dijet productions

Drell-Yan lepton pair production in pA collisions at NLO. (work in process)

NLO dijet productions in pA collisions. (Hard)

Single inclusive DIS at NLO. (see similar work [Balitsky, Chirilli, 10], [Beuf, 11])

Direct photon production in pA collisions at NLO (see [Jalilian-Marian, Rezaeian, 12]) and
NNLO (similar to the DY case at NLO). Universality and large Nc

Factorization beyond the hybrid formalism by using the k⊥ dependent
parton distributions (from the proton side) and fragmentation functions. (work in progress)
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